Accumulator-shop.ru

Аккумулятор Шоп
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Lm317; регулируемый стабилизатор напряжения и тока

lm317 — регулируемый стабилизатор напряжения и тока

Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.

Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

импульсный стабилизатор тока светодиода

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

стабилизатор тока для светодиода на схеме maxim

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Читайте так же:
Где разместить выключатель света балкона

DataSheet

Описание

LM217, LM317 — монолитные интегральные схемы в корпусах TO-220, TO-220FP и D²PAK , предназначенные для использования в качестве стабилизаторов напряжения. Могут поддерживать ток в нагрузке более 1.5 А и регулируемое напряжение в диапазоне от 1.2 В до 37 В. Номинальное выходное напряжение выбирается с помощью резистивного делителя, что делает использование устройства очень простым. Отечественным аналогом является микросхема КР142ЕН12А.

Свойства

  • Выходное напряжение от 1.2 В до 37 В
  • Выходной ток 1.5 А
  • 0.1 % отклонение регулировки в линии и нагрузке
  • Изменяемое управление для высоких напряжений
  • Полный набор защиты: ограничение тока; отключение при перегреве; контроль качества SOA

Маркировка

TO-220TO-220D²PAKTO-220FP
LM217TLM217T-DGLM217D2T-TR
LM317TLM317T-DGLM317D2T-TRLM317P
LM317BT

Расположение выводов

Распиновка LM217, LM317

Рис. 1 Вид сверху

Купить LM317 можно здесь.

Максимальные значения

Абсолютные максимальные значения

ОбозначениеПараметрЗначениеЕд. изм.
VI — VOВходное напряжение40В
IOВыходной токВнутренне ограниченА
TOPРабочая температура p-n перехода для:LM217от — 25 до 150°C
LM3170 до 125
LM317Bот -40 до 125
PDРассеиваемая мощностьВнутренне ограниченаВт
TSTGТемпература храненияот — 65 до 150°C

Тепловые характеристики

ОбозначениеПараметрD²PAKTO-220TO-220FPЕд. изм.
RthJCТепловое сопротивление кристалл-корпус355°C/Вт
RthJAТепловое сопротивление кристалл-среда62.55060°C/Вт

Схема

Внутренняя схема LM317

Рис. 2 Внутренняя схема

Электрические характеристики

Электрические характеристики LM217

VI — VO = 5 В, IO = 500 мА, IMAX = 1.5 A и PMAX = 20 Вт, TJ = от — 55 до 150 °C, если не указано иное.

1. CADJ подключается между выводом управления и землей.

Электрические характеристики LM317

VI — VO = 5 В, IO = 500 мА, IMAX = 1.5 A и PMAX = 20 Вт, TJ = от 0 до 150 °C, если не указано иное.

1. CADJ подключается между выводом управления и землей.

Электрические характеристики LM317B

VI — VO = 5 В, IO = 500 мА, IMAX = 1.5 A и PMAX = 20 Вт, TJ = от -40 до 150 °C, если не указано иное.

1. CADJ подключается между выводом управления и землей.

Типовые характеристики

Выходной ток Рис. 3 Выходной ток от входного-выходного дифференциального напряжения Падение напряжения Рис. 4 Падение напряжения от температуры p-n перехода Опорное напряжение Рис. 5 Опорное напряжение от температуры p-n перехода

Управляемый стабилизатор

Рис. 6 Упрощенная схема управляемого стабилизатора

Применение

Стабилизаторы серии LM217, LM317 поддерживают опорное напряжение 1.25 В между выходом и регулировочным выводом. Оно используется поддержания постоянного тока через делитель напряжения (см. Рис. 6), что дает выходное напряжение VO рассчитываемое по формуле:

Регуляторы были разработаны для того, чтобы уменьшить ток IADJ и поддерживать его постоянным в линии при изменении нагрузки. Как правило, отклонением IADJ × R2 можно пренебречь. Чтобы обеспечить выше описанные требования, стабилизатор возвращает ток покоя на выходной вывод для поддержания минимального нагрузочного тока. Если нагрузка недостаточна, то выходное напряжение будет расти. Поскольку LM217, LM317 стабилизаторы с незаземленным «плавающим» выходом и видят только разность между входным и выходным напряжением, для источников с очень высоким напряжением относительно земли, можно стабилизировать напряжение так долго, пока не будет превышена максимальная разность между входным и выходным напряжением. Кроме того, можно легко собрать программируемый стабилизатор. При подключении постоянного резистора между выходом и регулировкой, устройство может быть использовано в качестве прецизионного стабилизатора тока. Характеристики могут быть улучшены добавлением емкостей, как описано ниже:

  • На вход байпаса конденсатор 1 мкФ.
  • На вывод управления конденсатор 10 мкФ, чтобы улучшить подавление пульсаций на 15 dB (CADJ ).
  • Танталовый электролитический конденсатор на выходе, чтобы улучшить переходную характеристику. Помимо конденсаторов можно добавить защитные диоды, как показано на рис. 7. D1 используется для защиты стабилизатора от короткого замыкания на входе, D2 для защиты от короткого замыкания на выходе и разряда емкости.
Читайте так же:
Провода подсветки панели приборов ваз 2109

Стабилизатор на 15 В с плавным включением Рис. 8 Стабилизатор на 15 В с плавным включением Стабилизатор тока Рис. 9 Стабилизатор тока

Стабилизатор на 5 В с электронным выключением Рис. 10 Стабилизатор на 5 В с электронным выключением Стабилизатор с цифровой регулировкой напряжения Рис. 11 Стабилизатор с цифровой регулировкой напряжения

R2 соответствует максимальному значению выходного напряжения

Зарядка для батареи 12 В

Рис. 12 Зарядка для батареи 12 В

RS устанавливает выходное сопротивление зарядки, рассчитываемое по формуле ZO = RS (1 + R2/R1). Применение RS дает возможность снизить уровень заряда при полностью заряженной батарее.

Зарядное устройство на 6 В, с ограничением по току

Рис. 13 Зарядное устройство на 6 В, с ограничением по току

*R3 устанавливает максимальный ток (0.6 А для 1 Ома).

*C1 рекомендуется подключить для фильтрации входных переходных процессов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:

  • GL317
  • SG31
  • SG317
  • UC317T
  • ECG1900
  • LM31MDT
  • SP900
  • КР142ЕН12 (отечественный аналог)
  • КР1157ЕН1 (отечественный аналог)

Рассмотрим самый простой вариант изготовления светодиодного драйвера своими руками с минимальными затратами времени. Для расчёта стабилизатора тока на LM317 для светодиодов используем калькулятор, которому необходимо указать требуемую силу тока для LED диодов. Предварительно составьте схему включения светодиодов, учитывая максимальную мощность микросхемы и блока питания для светодиодов. Заранее поищите систему охлаждения для всей конструкции.

Калькулятор

Комплектующие и схема

Деталей нужно совсем немного:

  • 2 резистора: постоянный, номиналом 200 Ом 2 Вт (лучше мощнее) и переменный настроечный 6,8 кОм 0,5 Вт;
  • 2 конденсатора, напряжение в соответствии с требованиями, ёмкость – 1000…2200 мкФ и 100…470 мкФ;
  • диодный мост или диоды, рассчитанные на напряжение от 100В и ток не менее 3..5 А;
  • вольтметр и амперметр (диапазон измерений, соответственно, 0…30 В и 0…2 А) – сойдут аналоговые и цифровые, на ваш вкус.
  • трансформатор с подходящими характеристиками – на выходе не более 25…26 В и ток не менее 1 А – по мощности лучше подобрать с хорошим запасом, чтобы не возникла перегрузка.
  • радиатор с винтовым креплением и термопаста.
  • корпус будущего блока питания, в который влезут все детали, и, что важно, с хорошей вентиляцией.
  • опционально: винтовые зажимы, ручки регулировки, «крокодилы» для выводов, ну и прочая мелочёвка – тумблеры, индикаторы работы, предохранители, которые уберегут блок питания от серьёзных поломок и сделают работу с ним более удобной.
Читайте так же:
Питание светодиодов большим током

На всякий случай отдельно разъясним, почему напряжение трансформатора не более 25 В. При выпрямлении с использованием фильтрующего конденсатора напряжение на выходе повышается на корень из двух, то есть примерно в 1,44 раза. Таким образом, имея на выходе обмоток 25 В переменного тока, после диодного моста и сглаживающего конденсатора напряжение составит около 35–36 В постоянного тока, что довольно близко к пределу микросхемы. Помните об этом, когда будете выбирать конденсаторы и трансформатор!

Как видите, работы очень мало – распайка деталей может выполняться даже навесным монтажом, без ущерба качеству, при условии аккуратного изолирования всех контактов и живучести блока питания.

После сборки не торопитесь подключать к блоку нагрузку – сначала проверьте напряжение питания на выходе диодного моста, а потом запустите блок на холостом ходу и пальцем проверьте температуру стабилизатора – он должен быть прохладным. После подключите питание от блока к какой-нибудь нагрузке и проверьте показания напряжения на выходе – они не должны меняться.

На что обратить внимание

  1. Благодаря использованию керамических конденсаторов SMD можно их разместить очень близко к выводам микросхемы LM3xx (конденсаторы C2 и C4 в корпусах 0805, можно припаять даже непосредственно на полях пайки стабилизатора.
  2. Элементы R2 и D2 следует поставить именно в такой последовательности (R2 ближе к U1).
  3. Нижний вывод резистора R1 не подключен напрямую к массе, только заканчивается полем припоя. Необходимо подключить как можно ближе к массе, тогда будут компенсацией падения напряжения на проводах массы.
  4. В качестве диодов D1 и D3 возможно стоит применить диоды Шоттки.

После сборки по такой схеме, не удалось заметить на осциллографе никаких пульсаций на выходе при токе нагрузки до 2,5 А даже в диапазоне 50 мВ/см. Падения напряжения не заметно с нагрузкой и без.

Правильная схема и плата для стабилизаторов на микросхемах LM317, LM337, LM350

БП на макетной плате

L7805 схема источника тока

L7805-1

L7805-CV — практически для любого радиолюбителя собрать источник питания со стабилизирующим выходным напряжением на микросхеме 7805 и аналогичных из этой серии, не представляет никакой сложности. Именно об этом линейном регуляторе входного постоянного напряжения пойдет речь в данном материале.

L7805-2

На рисунке выше, представлена типичная схема линейного стабилизатора L7805 с положительной полярностью 5v и номинальным рабочим током 1.5А. Данные микросхемы приобрели такую известность, что за их производство взялись большинство мировых компаний. А вот на снимке ниже, представлена схема немного усовершенствованная, за счет увеличения емкости конденсаторов С1-С2.

L7805-3

Как правило, между радиотехниками и электронщиками этот чип называют сокращенно, не называя впереди стоящих буквенных обозначений указывающих на производителя. Ведь и так понятно для каждого, что это — стабилизатор, последняя цифра, которого указывает его напряжение на выходе.

Читайте так же:
Светодиодная индикация в сети переменного тока

Кто еще не сталкивался с данными электронными компонентами на практике и мало, что о них знает, то вот вам для наглядности небольшое видео по сборке схемы:

Стабилизатор напряжения 5v! На микросхеме L7805CV

Одно из важных условий — высокое качество компонентов

На самом деле при покупке комплектующих изготовитель играет значительную роль. Когда вы приобретаете любые электронные компоненты, всегда обращайте внимание на бренд детали, а также поинтересуйтесь кто их поставляет. Лично меня устраивает продукция компании «STMicroelectronics», производителя микроэлектронных компонентов.

L7805-4

Безымянные стабилизаторы или от мало известных фирм, как правило всегда стоят дешевле, чем аналогичные от известных брендов. Но и качество таких деталей не всегда на должном уровне, особенно сказывается в их работе существенный разброс напряжения на выходе.

Практически мне много раз попадались микросхемы L7805 выдававшие выходное напряжение в пределах 4,6v, вместо 5v, а другие из этой же серии давали наоборот больше — 5,3v. К тому же, такие образцы частенько могут создавать приличный фон и повышенное потребление мощности.

Схема источника тока выполненная на микросхемах из серии L78xx

L7805-5

Значение выходного тока обусловлено постоянным резистором R*, включенным параллельно с конденсатором 0,1uF, именно это сопротивление в свою очередь создает нагрузку для L7805. Причем, стабилизатор не имеет заземления. На «землю» идет только один вывод сопротивления нагрузки Rн. Принцип действия такой схемы включения обязывает L7805-CV выдавать в нагрузку определенную величину тока, посредством регулирования выходного напряжения.

Величина тока на выходе источника L78хх

Неприятный момент, который можно наблюдать в схеме, это суммирование тока покоя Id с током на выходе. Параметры тока покоя обозначены в документации на микросхему. В основном такие стабилизаторы имеют постоянную величину тока покоя, составляющую 8мА. Это значение является наименьшим током выходной цепи чипа. Следовательно, при попытке создать источник тока, у которого значение будет меньше, чем 8мА, никак не получится.

Здесь можно скачать документацию на микросхему L78xx L78_DataSheet.pdf

В лучшем случае от L7805 можно получить выходные токи в пределах от 8мА до 1А. Впрочем, при работе на токах превышающие значение 750-850 мА, категорически рекомендуем устанавливать микросхему на радиатор. Но и работать на таких токах все же не оправдано. Обозначенный в документации ток в 1А — это его максимальное значение. В фактических условиях чип наверняка выйдет из строя из-за перегрева. Поэтому, оптимальный выходной рабочий ток должен находится в пределах от 20 мА до 750 мА.

L7805-6

Корректность выходного тока и величина напряжения

В тоже время не постоянность тока покоя формируется как ΔId = 0.5мА. Данное значение показывает верность настройки тока в выходном тракте. Соответственно и точность установки выходного тока зависит от сопротивления нагрузки микросхемы R*. В этом случае, желательно применять прецизионные резисторы, обладающие высокой стабильностью и существенной точностью, от ±0,0005% до ±0,5%.

Читайте так же:
Как заменить выключатель света дома

Оптимальное сопротивление нагрузки

Одновременно с этим нужно принять во внимание значение сопротивления нагрузки. Здесь все просто, то есть используя закон Ома можно все высчитать. Например:

Исходя их таких несложных расчетов мы выяснили, какое должно быть напряжение на нагрузке с сопротивлением 100 Ом, чтобы создать выходной ток 100 мА. Согласно эти расчетам получается, что оптимальным вариантом будет использовать микросхему 7812 либо 7815, рассчитанную на 12v и 15v в соответствии, с целью иметь запас.

Заключение

Естественно, в такой схеме источника тока присутствуют ограничительные моменты. Хотя она может быть полезна для большого количества решений, в которых высокая точность не играет особой роли. Отсутствие какой либо сложности в схеме, дает возможность изготовить источник тока практически в любых условиях, тем более комплектующие для нее приобрести не составит труда.

Источник напряжения стабилизатора

Обе схемы стабилизаторов требуют источника питания постоянного тока (то есть подачу на них напряжения), и это напряжение должно быть как минимум на 3 В выше максимального напряжения, которое надо получить от регулируемого блока питания. Поэтому если планируется собрать источник питания, который можно регулировать от 1,2 до 12 вольт, понадобится на входе БП на 15 вольт или более (максимум до 40 вольт, иначе микросхемы сгорят от перегруза).

Схема блока питания постоянного напряжения

Традиционно используют сетевой трансформатор для преобразования сетевого напряжения 220 В до 15 В переменного тока. Затем используем мостовой выпрямитель для преобразования переменного тока в постоянный, а затем несколько фильтрующих конденсаторов для сглаживания пульсаций до чистого постоянного тока. Естественно нужен предохранитель для сетевой стороны.

Но не обязательно брать трансформатор, у большинства есть немало осиротевших импульсных БП которые больше не используются. Эти источники питания в основном от нерабочих мониторов или ноутбуков. У них выходное напряжение 20 В и максимальный ток 4,5 А. А этого более чем достаточно для самодельного переменного источника питания. Использование такого позволит после стабилизатора получать от 1,2 до 17 вольт.

Вы также можете подключить более одного источника питания последовательно для более высокого напряжения, например, два 12-вольтовых последовательно соединённые дадут напряжение 24 В, но максимальный ток будет таким, как в блоке питания с наименьшим номиналом мощности.

Прекрасной идеей будет добавить вольтметр и амперметр в самодельный лабораторный блок питания, тем более в магазинах полно готовых цифровых модулей светодиодных А/В-метров, поэтому делать его самому нет смысла. А если не хотите покупать готовый — ставьте обычные стрелочные индикаторы, как на фото.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector