Accumulator-shop.ru

Аккумулятор Шоп
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Магнитный двигатель: миф или реальность

Магнитный двигатель: миф или реальность?

Идея разработки вечного бестопливного двигателя не нова, за разработку такого агрегата во все времена брались именитые ученые своего времени. Однако ни технических средств для реализации задумки, не возможностей того времени не хватало. В некоторых случаях дело доходило только до теоретического обоснования, но существуют примеры реально разработанных альтернативных двигателей, которые призваны создать конкуренцию классическим электрическим машинам. Одним из таких вариантов является магнитный двигатель.

Отличия от GPS маячка против кражи

В противоугонной терминологии часто встречается понятие «спутниковой метки в автомобиль». В данном случае имеется в виду GPS маячок, который спрятан где-то под обшивкой салона и раз в сутки передающий сигналы о своем местоположении.

Принцип его работы кардинально отличается от радиочастотной метки против угона. Большую часть своей «жизни» маячок просто спит, раз в 24 часа связываясь с «хозяином» и убеждаясь, что все в порядке. Как только в ответ поступает сигнал о тревоге (например, в случае угона), маяк «просыпается» и начинает активно посылать сигналы. Таким образом машину становится возможным обнаружить.

Виды электромагнитных подвесок

Исследования и разработки по улучшению ходовых качеств, сосредоточенные на системе подвески автомобиля, продвигаются по трем, отличным друг от друга, направлениям.

  1. Подвеска Delphi;
  2. Решение от компании SKF;
  3. Электромагнитная подвеска Боуза.

Магнитная подвеска от Delphi

Электромагнитная подвеска, разработанная компанией Delphi, представляет собой однотрубный амортизатор, заполненный магнито-реологическим составом, жидкостью с включением магнитных частиц, размером от трех до десяти микрон.

Специальное покрытие препятствует их слипанию, а количество равно одной третьей от требуемого объема жидкости. Головка поршня амортизатора представляет собой электромагнит, управляемый сигналами бортового компьютера. Под действием наведенного магнитного поля, частицы выстраиваются в пространстве в упорядоченные структуры, тем самым увеличивая вязкость жидкости и изменяя режим работы амортизатора.

Электромагнитная подвеска Delphi в действии – видео, наглядно иллюстрирующее конструкцию и полученный результат.

А так же видео полевых испытаний Corvette C5

Скорость реакции такой системы составляет 1 мс, что в десять раз меньше, чем в системах с электромагнитными клапанами. Потребляемая мощность составляет порядка 20 Вт. При неисправности электромагнита или в отсутствии управляющих сигналов, подвеска компании Delphi работает в режиме обычного гидравлического амортизатора.

Историческая справка. Первые эксперименты с магнито-реологическим составом в 1940 году провел Яков Рабинович. Родившийся на заре двадцатого столетия, в украинском городе Харькове, в 1935 году эмигрировал в США, где работал в Национальном бюро стандартов.

Будучи талантливым инженером, запатентовал более 300 изобретений. Среди них присутствует патент на дисковый магнитный накопитель, прообраз современных винчестеров. Скончался осенью 1999 года.

Читайте так же:
Схема подключения выключателя масляный обогреватель

Шведская магнитная подвеска

Другим путем решили пойти конструкторы шведской компании SKF, решив, что простота – залог успеха и надежности. Подвеска в их исполнении представляет собой капсулу, состоящую из двух электромагнитов. Бортовой компьютер автомобиля анализирует данные колесных датчиков и «на лету» изменяет жесткость магнитного демпферного элемента, выбирая наиболее оптимальный режим работы.

Роль упругого элемента выполняет обычная пружина, что позволяет транспортному средству сохранять подвижность при отсутствии управляющих сигналов. Кроме того, даже при длительной стоянке автомобиля, отсутствует эффект «проседания», причиной которого является истощение аккумуляторных батарей, питающих элементы подвески.

Электромагнитная подвеска профессора Боуза

подвеска Боуза

Но истинный прорыв в данной области совершил Амар Боуз, профессор Массачусетского технологического университета, основатель и владелец компании BOSE. Выложенное в Интернет видео испытаний его изобретения глубоко потрясло автомобильную общественность.

Электромагнитная подвеска профессора Боуза представляет собой линейный электродвигатель, работающий в зависимости от выбранного режима в качестве упругого или демпфирующего элемента.

Идея, безусловно, не нова. Но никому еще не удавалось добиться хотя бы схожего быстродействия. Шток амортизатора, с закрепленными на нем постоянными магнитами, совершает возвратно-поступательные движения по длине обмотки статора, расположенного в корпусе узла.

Такая конструкция не только обеспечивает эффективное гашение колебаний, возникающих из-за неровности дороги, но и открывает новые возможности для управления транспортным средствам.

магнитная подвеска

Заводя машину в вираж, можно подобрать такую схему сигналов бортового компьютера автомобиля, что опорным будет заднее внешнее колесо. Заехав в поворот, электромагнитная система перенесет нагрузку на внешнее переднее колесо. Как результат – полный контроль автомобиля на дорожном покрытии любого качества.

Электрогенератор – еще один режим работы подвески Боуза. При передвижении машины по прямой, колебания, вызванные неровностью дорожного покрытия, преобразовываются в электрический ток. Энергия не рассеивается в пространстве, а собирается в аккумуляторных батареях для дальнейшего использования (рекуперации).

Но довольно слов! Видео демонстрации ходовых качеств новой подвески говорит само за себя.

Основная сложность на данный момент связана с разработкой программного обеспечения, способного реализовать весь потенциал подвески Боуза. Но есть надежда, что в ближайшее время проблема будет решена, и удивительная подвеска пойдет в серийное производство.

Установка магнитных кнопок: советы и лайфхаки

Natalya_Pyhova

Такие застёжки часто применяются при изготовлении сумок. Магнитные кнопки удобно использовать, например, для скрепления верхних краёв сумки или для фиксации клапанов карманов. Установить кнопки несложно, но стоит учесть несколько моментов, которые помогут сделать всё аккуратно и помочь кнопке держаться прочно.

Читайте так же:
Блок питания для вакуумного выключателя

Кнопки устанавливаются до сшивания деталей сумки, карманов и так далее.

Лайфхак для установки фурнитуры на лямки полукомбинезона

Вам потребуется:

Как установить магнитную кнопку: мастер-класс

— магнитная кнопка (она состоит из 4 деталей);

— маркер для ткани;

— маленькие острые ножницы или вспарыватель;

— клей для обработки краёв изделия, предотвращающий осыпание, например, Fray Check от Pryme;

— клеевой односторонний дублирующий материал;

— утюг и гладильная доска.

Кнопки и крючки для одежды: виды, отличия, применение

Шаг 1

Как установить магнитную кнопку: мастер-класс

На обеих деталях изделия, где будут установлены две половинки кнопки, наметьте места их установки.

Шаг 2

Как установить магнитную кнопку: мастер-класс

Вырежьте 2 квадрата из дублирующего материала размером примерно 5х5 см и с изнанки укрепите места деталей, где будут установлены кнопки. В дальнейшем это предотвратит разрывы и сделает застёжку более прочной.

Совет: вы можете сохранять небольшие кусочки дублирующего материала, оставшиеся от прошлых проектов, чтобы потом применить их для установки кнопок.

Шаг 3

Как установить магнитную кнопку: мастер-класс

С лицевой стороны деталей изделия наметьте две чёрточки маркером, ориентируясь на прорези в плоских детальках кнопки.

Шаг 4

Как установить магнитную кнопку: мастер-класс

Маленькими ножницами или распарывателем прорежьте материал по намеченным линиям.

Совет: не делайте разрезы слишком длинными, старайтесь придерживаться разметки. Лучше сделать их покороче, а потом, если нужно, удлинить.

Как установить магнитную кнопку: мастер-класс

Совет: края разрезов можно дополнительно укрепить средством, предотвращающим осыпание. Нанесите его немного на разрезы и дождитесь высыхания.

Шаг 5

Как установить магнитную кнопку: мастер-класс

Обратите внимание: если мы работаем с клапаном кармана, то выпуклая деталь кнопки (на фото выше она справа) обычно ставится на клапан, а деталь с выемкой (на фото слева) — на карман.

Как установить магнитную кнопку: мастер-класс

Устанавливаем первую деталь с ножками. Проденьте ножки сквозь разрезы и выведите их на изнаночную сторону.

Как установить магнитную кнопку: мастер-класс

Сверху наденьте шайбу и загните ножки в стороны.

Повторите с второй деталью кнопки.

Установка магнитных кнопок: советы и лайфхаки

Совет: перед установкой второй половинки кнопки проверьте ещё раз правильность разметки для установки, совместив детали.

Шаг 6

Как установить магнитную кнопку: мастер-класс

Для большей надёжности сверху место крепления можно ещё усилить клеевым дублирующим материалом, взяв лоскут немного больше первого. Готово.

Установка противоугонного замка капота.

Замки капота предназначены для предотвращения скрытого доступа в подкапотное пространство автомобиля.

Недоступность моторного отсека является важным элементом защиты автомобиля от угона.

Защита подкапотного пространства, как правило, создает серьезные препятствия для угонщика :

• не дает обеззвучить сирену автосигнализации

• не позволяет восстановить блокировки двигателя, расположенные под капотом

• не позволяет завести автомобиль, используя автономную (не штатную) систему управления двигателем (т.н. «паук»), а также автономную систему питания
• не позволяет произвести замену контроллера управления двигателем (для обхода штатного иммобилайзера)
• делает недоступным диагностический разъем (в тех случаях, когда он находится под капотом), затрудняя выявление блокировок и манипуляции со штатным иммобилайзером
• значительно затрудняет угон на том этапе, когда автосигнализация уже обезврежена (вскрыт или подобран код радиоканала), но под заблокированным капотом остается невосстановленная блокировка двигателя

Читайте так же:
Схема подключения выключателя с предохранителем

Плюсы и минусы магнитных подвесок

плюсы ЭМ подвески

Как и любое другое изделие, ЭМ подвеска обладает своими характеристиками и качествами. При установке подобной конструкции на свою машину вы получаете достаточно внушительный прирост, в плане ее управляемости. Также стоит отметить такие преимущества:

  • Более мягкий, плавный ход.
  • Высокая скорость отклика бортового компьютера, что также повышает уровень управляемости.
  • Экономия потребляемой энергии.
  • Многофункциональность – есть возможность выбрать между автоматическим и механическим режимом работы.

Основной негативный фактор, о котором стоит упомянуть, заключается в наличии и установке на автомобиль программного обеспечения. Ставить дополнительное ПО придется отдельно. На данный момент малое количество машин, вышедших из-под конвейера, обладают подобной конструкцией, включающей магнитную подвеску автомобиля. Также в качестве минуса стоит упомянуть высокую стоимость подобного «апгрейда» ходовой части.

Электромагниты

Однажды, в очередной раз, перелистывая книгу, которую нашел у мусорного бачка, обратил внимание на простой, приблизительный расчет электромагнитов. Титульный лист книги показан на фото1.

Самодельный электромагнит, titul

Вообще их расчет это сложный процесс, но для радиолюбителей, расчет, приведенный в этой книге, вполне подойдет. Электромагнит применяется во многих электротехнических приборах. Он представляет собой катушку из проволоки, намотанной на железный сердечник, форма которого может быть различной. Железный сердечник является одной частью магнитопровода, а другой частью, с помощью которой замыкается путь магнитных силовых линий, служит якорь. Магнитная цепь характеризуется величиной магнитной индукции — В, которая зависит от напряженности поля и магнитной проницаемости материала. Именно поэтому сердечники электромагнитов делают из железа, обладающего высокой магнитной проницаемостью. В свою очередь, от магнитной индукции зависит силовой поток, обозначаемый в формулах буквой Ф. Ф = В • S — магнитная индукция — В умноженная на площадь поперечного сечения магнитопровода — S. Силовой поток зависит также от так называемой магнитодвижущей силы (Ем), которая определяется числом ампервитков на 1см длины пути силовых линий и может быть выражена формулой: Ф = магнитодвижущая сила (Ем) • магнитное сопротивление (Rм) Здесь Ем = 1,3•I•N, где N — число витков катушки, а I — сила текущего по катушке тока в амперах. Другая составляющая: Rм = L/M•S, где L — средняя длина пути силовых магнитных линий, М — магнитная проницаемость, a S — поперечное сечение магнитопровода. При конструировании электромагнитов весьма желательно получить большой силовой поток. Добиться этого можно, если уменьшить магнитное сопротивление. Для этого надо выбрать магнитопровод с наименьшей длиной пути силовых линий и с наибольшим поперечным сечением, а в качестве материала — железоматериал с большой магнитной проницаемостью. Другой путь увеличения силового потока путем увеличения ампервитков не является приемлемым, так как в целях экономии проволоки и питания следует стремиться к уменьшению ампервитков. Обычно расчеты электромагнитов делаются по специальным графикам. В целях упрощения в расчетах мы будем также пользоваться некоторыми выводами из графиков. Предположим, требуется определить ампервитки и силовой поток замкнутого железного магнитопровода, изображенного на рисунке 1,а и сделанного из железа самого низкого качества.

Читайте так же:
Выключатель с охранным датчиком

Электромагниты, ris1

Рассматривая график (к сожалению я его в приложении не нашел) намагничивания железа, нетрудно убедиться, что наиболее выгодной является магнитная индукция в пределах от 10 000 до 14 000 силовых линий на 1 см2, что соответствует от 2 до 7 ампервиткам на 1 см. Для намотки катушек с наименьшим числом витков и более экономичных в смысле питания для расчетов надо принимать именно эту величину (10 000 силовых линий на 1 см2 при 2 ампервитках на 1 см длины). В этом случае расчет может быть произведен следующим образом. Так, при длине магнитопровода L =L1+L2 равной 20 см + 10 см = 30 см, потребуется 2×30=60 ампервитков. Если диаметр D сердечника (Рис.1,в)примем равным 2 см, то его площадь будет равна: S = 3,14xD2/4 = 3,14 см2. 0тсюда возбуждаемый магнитный поток будет равен: Ф = B х S= 10000 x 3,14=31400 силовых линий. Можно приближенно вычислить и подъемную силу электромагнита (P). P = B2 • S/25 • 1000000 = 12,4 кг. Для двухполюсного магнита этот результат следует удвоить. Следовательно, Р=24,8 кг = 25 кг. При определении подъемной силы необходимо помнить, что она зависит не только от длины магнитопровода, но и от площади соприкосновения якоря и сердечника. Поэтому якорь должен точно прилегать к полюсным наконечникам, иначе даже малейшие воздушные прослойки вызовут сильное уменьшение подъемной силы. Далее производится расчет катушки электромагнита. В нашем примере подъемная сила в 25 кг обеспечивается 60 ампервитками. Рассмотрим, какими средствами можно получить произведение N•J = 60 ампервиткам. Очевидно, этого можно добиться либо путем использования большого тока при малом количестве витков катушки, например 2 А и 30 витков, либо путем увеличения числа витков катушки при уменьшении тока, например 0,25 А и 240 витков. Таким образом, чтобы электромагнит имел подъемную силу в 25 кг, на его сердечник можно намотать и 30 витков и 240 витков, но при этом изменить величину питающего тока. Конечно, можно выбрать и другое соотношение. Однако изменение величины тока в больших пределах не всегда возможно, так как оно обязательно потребует изменения диаметра применяемой проволоки. Так, при кратковременной работе (несколько минут) для проводов диаметром до 1 мм допустимую плотность тока, при которой не происходит сильного перегревания провода, можно принять равной 5 а/мм2. В нашем примере проволока должна быть следующего сечения: для тока в 2 а — 0,4 мм2, а для тока в 0,25 а — 0,05 мм2, диаметр проволоки будет 0,7 мм или 0,2 мм соответственно. Каким же из этих проводов следует производить обмотку? С одной стороны, выбор диаметра провода может определяться имеющимся ассортиментом проволоки, с другой — возможностями источников питания, как по току, так и по напряжению. Действительно, две катушки, одна из которых изготовлена из толстой проволоки в 0,7 мм и с небольшим числом витков — 30, а другая — из проволоки в 0,2 мм и числом витков 240, будут иметь резко различное сопротивление. Зная диаметр проволоки и ее длину, можно легко определить сопротивление. Длина проволоки L равна, произведению общего числа витков на длину одного из них (среднюю): L = N x L1 где L1 — длина одного витка, равная 3,14 x D. В нашем примере D = 2 см, и L1 = 6,3 см. Следовательно, для первой катушки длина провода будет 30 x 6,3 = 190 см, сопротивление обмотки постоянному току будет примерно равно ? 0,1 Ом, а для второй — 240 x 6,3 = 1 512 см, R ? 8,7 Ом. Пользуясь законом Ома, нетрудно вычислить необходимое напряжение. Так, для создания в обмотках тока в 2А необходимое напряжение равно 0,2В, а для тока в 0,25А — 2,2В. Таков элементарный расчет электромагнитов. Конструируя электромагниты, надо не только производить указанный расчет, но и уметь выбрать материал для сердечника, его форму, продумать технологию изготовления. Удовлетворительными материалами для изготовления сердечников в кружках являются прутковое железо (круглое и полосовое) и различные. железные изделия: болты, проволока, гвозди, шурупы и т. д. Чтобы избежать больших потерь на токах Фуко, сердечники для приборов переменного тока необходимо собирать из изолированных друг от друга тонких листов железа или проволоки. Для придания железу «мягкости» его необходимо подвергать отжигу. Большое значение имеет и правильный выбор формы сердечника. Наиболее рациональные из них кольцевые и П-образные. Некоторые из распространенных сердечников показаны на рисунке 1.

Читайте так же:
Установка выключателя массы ваз 2114

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector