Accumulator-shop.ru

Аккумулятор Шоп
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Светодиоды и их применение

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED — light emitting diode)— полупроводниковый прибор, излучающий некогерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.

Светодиоды и их применение 1

Достоинства светодиодов:

  • 1.Светодиоды не имеют никаких стеклянных колб и нитей накаливания, что обеспечивает высокую механическую прочность и надежность(ударная и вибрационная устойчивость)
  • 2.Отсутствие разогрева и высоких напряжений гарантирует высокий уровень электро- и пожаробезопасности
  • 3.Безынерционность делает светодиоды незаменимыми, когда требуется высокое быстродействие
  • 4.Миниатюрность
  • 5.Долгий срок службы (долговечность)
  • 6.Высокий КПД,
  • 7.Относительно низкие напряжения питания и потребляемые токи, низкое энергопотребление
  • 8.Большое количество различных цветов свечения, направленность излучения
  • 9.Регулируемая интенсивность

Недостатки светодиодов:

  • 1.относительно высокая стоимость. Отношение деньги/люмен для обычной лампы накаливания по сравнению со светодиодами составляет примерно 100 раз
  • 2.малый световой поток от одного элемента
  • 3.деградация параметров светодиодов со временем
  • 4.повышенные требования к питающему источнику

Внешний вид и основные параметры светодиодов:

У светодиодов есть несколько основных параметров.

  1. Тип корпуса
  2. Типовой (рабочий) ток
  3. Падение (рабочее) напряжения
  4. Цвет свечения (длина волны, нм)
  5. Угол рассеивания

В основном под типом корпуса понимают диаметр и цвет колбы (линзы). Как известно, светодиод — полупроводниковый прибор, который необходимо запитать током. Так ток, которым следует запитать тот или иной светодиод называется типовым. При этом на светодиоде падает определенное напряжение.

Цвет излучения определяется как используемыми полупроводниковыми материалами, так и легирующими примесями. Важнейшими элементами, используемыми в светодиодах, являются: Алюминий (Al), Галлий (Ga), Индий (In), Фосфор (P), вызывающие свечение в диапазоне от красного до жёлтого цвета. Индий (In), Галлий (Ga), Азот (N) используют для получения голубого и зелёного свечений. Кроме того, если к кристаллу, вызывающему голубое (синее) свечение, добавить люминофор, то получим белый цвет светодиода. Угол излучения также определяется производственными характеристиками материалов, а также колбой (линзой) светодиода.

В настоящее время светодиоды нашли применение в самых различных областях: светодиодные фонари, автомобильная светотехника, рекламные вывески, светодиодные панели и индикаторы, бегущие строки и светофоры и т.д.

Схема включения светодиодов и расчет необходимых параметров:

Так как светодиод является полупроводниковым прибором, то при включении в цепь необходимо соблюдать полярность. Светодиод имеет два вывода, один из которых катод (”минус”), а другой — анод (”плюс”).

Светодиоды и их применение 2

Светодиод будет “гореть” только при прямом включении, как показано на рисунке.
При обратном включении светодиод “гореть” не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Не трудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Читайте так же:
Как соединить сетевой кабель с сетевой розеткой

Светодиоды и их применение 3

Имеется один светодиод, как его подключить правильно в самом простом случае?

Что бы правильно подключить светодиод в самом простом случае необходимо подключить его через токоограничивающий резистор.

Светодиоды и их применение 4

Пример 1.
Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Светодиоды и их применение 5

Рассчитаем сопротивление токоограничивающего резистора
R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода

Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

Тоесть надо взять резистор сопротивлением 100 Ом

Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, расчитывая необходимые сопротивления.

Пример 1.
Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА.
Надо подключить 3 светодиода к источнику 15 вольт.
Производим расчет: 3 светодиода на 3 вольта = 9 вольт , тоесть 15 вольтового источника достаточно для последовательного включения светодиодов

Светодиоды и их применение 6

Расчет аналогичен предыдущему примеру
R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 2.
Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчет: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчет токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчет токоограничительных резисторов для каждой ветви.

Светодиоды и их применение 7

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одигаковые параметры, то сопротивления в ветвях одинаковые.

Пример 3.
Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем свое собственное сопротивление.

Например имеются 5 разных светодиодов:
1ый красный напряжение 3 вольта 20 мА
2ой зеленый напряжение 2.5 вольта 20 мА
3ий синий напряжение 3 вольта 50 мА
4ый белый напряжение 2.7 вольта 50 мА
5ый желтый напряжение 3.5 вольта 30 мА

Читайте так же:
Замена выключателя света hotpoint ariston

Так как разделяем светодиоды по группам по току

1) 1ый и 2ой
2) 3ий и 4ый
3) 5ый

Светодиоды и их применение 8

рассчитываем для каждой ветви резисторы
R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

При подсчете токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО!) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.

Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определенный разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведенных выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит пр и немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Как выбрать светодиодную лампу

Как выбрать светодиодную лампу

Яркость светодиодной лампы характеризуется световым потоком, который измеряется в люменах (лм, lm). Насколько ярко вы хотите осветить офис или комнату, решать вам. Но старайтесь придерживаться рекомендаций СНиПа СНиП 23-05-95*. Естественное и искусственное освещение :

Тип помещенияНорма освещённости (лм/кв. м)
Спальня, кухня150
Детская комната200
Ванная, туалет50
Офис общего назначения300
Офис для чертёжных работ500

Чтобы определиться с мощностью ламп и их количеством, воспользуйтесь таблицей. Также она отражает соответствие привычных лампочек накаливания пришедшим им на смену светодиодным.

Световой поток (лм)
Светодиодная лампа (Вт)
Лампа накаливания (Вт)
250325
400540
650860
1 30014100
2 10022150

Из таблицы видно, насколько меньше энергии потребляют светодиодные лампы. Это одна из основных причин их популярности.

Читайте так же:
Таблица допустимый длительный ток для кабелей с алюминиевыми жилами

Цветовой спектр

Не менее важную роль при выборе лампы играет и цвет излучаемого потока. За него отвечает цветовая температура, которая измеряется в градусах Кельвина (К). Чем меньше этот параметр, тем теплее будет свет.

Цветовая температура (К)Оттенок света
2 700–2 800тёплый жёлтый
3 000тёплый белый
4 000нейтральный белый
6 000холодный белый

Наиболее комфортными для дома считаются жёлтые оттенки: они помогают расслабиться и отдохнуть. Тёплый белый свет рекомендуется при работе в офисных помещениях. Считается, что он повышает работоспособность. А лампы с холодным белым светом предназначены только для нежилых хозяйственных помещений.

Диапазон напряжения и индекс цветопередачи

Если обычные лампы накаливания без потери яркости работали при напряжении 220 В, то большинству светодиодных для стабильного излучения достаточно и более низких значений. То есть владельцы таких ламп даже не заметят перепадов напряжения в электросети.

При покупке старайтесь выбирать диапазон напряжения с наибольшим разбросом значений.

То, насколько естественно будут передаваться цвета предметов в свете той или иной лампы, определяет индекс цветопередачи. Он обозначается параметром CRI (color rendering index) или Ra. Чем выше индекс цветопередачи, тем естественнее будут выглядеть освещаемые предметы.

В жилых помещениях рекомендуется использовать лампы с индексом не меньше 80 CRI или Ra.

Угол рассеивания

Светодиоды устроены так, что способны светить только перед собой: в сторону отклоняется очень малая часть света. Поэтому обращайте внимание не только на их количество, но и на то, как они расположены. От этого напрямую будет зависеть угол рассеивания. Для разных моделей ламп он может быть от 30 до 360 градусов.

Пульсация света

Свет некачественных ламп часто пульсирует. Это незаметно для глаза человека, но может оказывать негативное влияние на нервную систему и привести к ухудшению зрения.

Приобретайте лампы с диапазоном пульсации не более 5–15%.

Срок службы и производитель

Светодиодные лампы имеют средний срок службы от 10 000 до 50 000 часов. Фактический установить весьма непросто, потому что технологии совершенствуются изо дня в день, срок службы рассчитывается только в теории.

Гарантия на такие лампы даётся от 1 до 5 лет и зависит от производителя. Обязанность магазина — заменить лампу, если в течение гарантийного срока она вышла из строя.

Производителей светодиодной техники сегодня великое множество. Причём не все они указывают на упаковке достоверную информацию о лампе. О реально же измеренных значениях той или иной лампы можно узнать, воспользовавшись сервисом тестирования lamptest.ru.

На его страницах собрано множество обзоров, статей и независимых тестов светодиодной продукции. Здесь можно не только узнать всё об интересующей модели, но и подобрать конкретную лампу под ваши нужды: для этого укажите необходимые параметры и нажмите кнопку «Показать».

Читайте так же:
Выключатель света для туарег

Светодиоды, которые имеют низкие показатели мощности

Самым распространенным и часто используемым типом светодиода являются, так называемые индикаторы, которые имеют небольшую мощность и малые размеры. Размер этих видов светодиодов составляет от 3 до 20 миллиметров. Эти элементы имеется возможность встретить в разнообразных бытовых приборах. Почти все светодиоды, которые выполнены в белом цвете имеют показатели тока 20 мА, 3,2 Вольта, мощность составляет значение в 0,06 Вт.

К светодиодам, которые обладают низкой мощностью, имеется возможность отнести элементы, используемые для поверхностного монтажа и SMD типа. Они предназначены для того, чтобы в необходимой степени подсвечивать экран телевизора, кнопки и пр. Данный тип светодиодов, достаточно часто применяется для современных светодиодных лент, которые нашли широкое применение, потому как имеют высокие показатели практичности и эффективности в использовании. Светодиодные ленты двух основных типов — SMD 3528 и SMD 5050 выполняются, именно из элементов описанных выше. Показатели их мощности, находятся в пределах 1,2 — 2 Вт, чего вполне хватает для создания качественных и надежных светодиодных лент.

Как регулировать яркость светодиода резистором

Однажды, на Киевском радиорынке, я наткнулся на прикольный светодиод. Точнее даже не просто светодиод, а три в одном. На общей звездообразной подложке находится сразу три кристалла – зеленый, красный и синий, что, теоретически, позволяет получить любой цвет.

image

По заявлениям продавца, каждый из трех кристаллов готов был поглотить 1Вт электрической мощности и выдать не намного меньше световой.

Я давно хотел устроить себе цветное освещение комнаты. И вот выдался случай.

Драйвер светодиода

Ахтунг, меня попросили написать эту секцию поподробнее, поэтому многабуфкаф!

Яркость светодиода зависит от тока, который проходит через него. Светодиоды, как и обычные диоды обладают одним неприятным моментом – падение напряжения на них сильно зависит от температуры.

Падение уменьшается с увеличением температуры, а это – очень подло. Давайте представим, что будет, если воткнуть светодиод напрямую в источник напряжения.

Итак, светодиод включился, и начал светиться. Вместе с этим он начал нагреваться. Из-за нагрева, падение уменьшилось, ток возрос, светодиод начал еще сильнее нагреваться. В конце-концов ток через диод превышает предельно допустимый и диод сгорает.

Если светодиод совсем маломощный, то для его питания достаточно просто прицепить резистор. Резистор нужно выбрать так, чтобы максимальный ток при полностью разогретом диоде не превышал допустимый.

У включения с резистором есть существенный недостаток – на резисторе рассеивается очень много мощности. К примеру, мой светодиод потребляет 350мА и падение на нем – 3В. Мощность, передаваемая в диод – 1.05 Вт. Пусть схема питается от 12 вольт. В таком случае необходимо поставить резистор (12-3)/0.35 = 25 Ом. На резисторе будет рассеиваться 5.76 Вт – а это, скажу вам, некислая печка. КПД включения с резистором получилось равным 18%. Ужасный результат.

Читайте так же:
Характеристики кабеля по силе тока

И вот тут появляются импульсные драйвера. Пример драйвера, который я использовал в своей лампочке.

image

Естественно, он слеплен из деталюшек, которые валялись у меня прямо здесь и сейчас, однако вполне работоспособен.

Принцип работы очень прост – ключ Q2 отрывается и через диод и катушку L3 начинает течь ток. Когда ток достигает номинального для диода, транзистор закрывается, а ток в диоде поддерживается за счет энергии, накопленной в катушке L3. Так происходит 180килораз в секунду.

Ток через диод определяется резистором R11.

КПД такого источника составляет 70-80%. Минимальное напряжение питания – 9В. Максимальное ограничено напряжением пробоя затвора Q2 и составляет 20В. Этот драйвер может выдавать мощность до сотен ватт при соответствующем Q2.

Внимание, можете не пытаться сделать сколь-либо вменяемый драйвер на mc34063. Драйвер работать будет, но проблем не оберетесь – светодиод будет моргать из-за дискретности регулирования ШИМа, индуктор будет влетать в насыщение из-за полу-автогенераторного принципа работы. Не повторяйте моих ошибок!

Схема лампы

Итак, с драйвером разобрались. Осталось прилепить три таких драйвера к контроллеру и написать прошивку. Получившаяся схема:

Комментировать особо нечего. Ну, кроме аудио усилителя. Если вдруг меня потянет сваять цветомузыку на базе этой лампы, то не придется ничего паять.

Собранная железяка выглядит так

Линейная регулировка яркости

Человеческое восприятие нелинейно. Если увеличить яркость светодиода с 1 до 2 то это будет восприниматься совсем не так, как если увеличить яркость с 101 до 102.

Практически все органы чувств человека имеют логарифмическую зависимость выхода от входа. Это позволяет нам одними и теми-же глазами смотреть и ночью и днем.

Если мы будем плавно увеличивать средний ток через светодиод, то сначала воспринимаемая яркость резко возрастет, а потом скорость нарастания яркости уменьшится.

Для того, чтобы скомпенсировать  это явление, я сделал табличку экспоненты. Яркость получилась вполне линейная, за исключением центрального участка, где скорость ее изменения немного замедляется. Однако скомпенсировать это место – слишком сложная задача, потому как воспринимаемая яркость зависит еще и от цвета. Оставим это производителям мониторов.

Алгоритм

Алгоритм изначально был очень простой. Случайным образом выбирается целевой цвет и скорость изменения цвета, а потом просто движемся по трем компонентам цвета к целевому, пока не достигнем.

HSV->RGB

После того, как лампочка была собрана, я заметил что большую часть времени она светится некрасивыми ненасыщенным цветом. Поэтому я решил перейти от RGB представления цвета к HSV. Что такое HSV знает википедия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector